Product Description

Very good quality for your choice ! more details ,please contact us 
Oil free / oil less dental Air compressor is mainly dental room, medical room etc
Features
1. Both 100 % copper and aluminium coil wire are available.
2. Compact, light, east to carry. Suit for mobile,
3. Oil free oilless silent series, get 100% purity pressed air

technical data as follows:

Model Air delivery Working pressure Speed Noise Power Outlet tank/L dimension 
(Nm3/min) (Mpa) (r.p.m) (dB) (kw) (inch) (L*W*H)CM
ZW-0.1/7 0.1 0.7  980 ≤78 1.5(220v) G1/4″ 40 75*35*75
ZW-0.24/7 0.24 0.7  950 ≤81 2.2(380v) G1/2″ 80 114*40*90
ZW-0.3/7 0.3 0.7  950 ≤81 2.2(380v) G1/2″ 80 114*40*90
VW-0.45/7 0.45 0.7  920 ≤83 4(380v) G1/2″ 120 130*46*96
VW-0.6/7 0.6 0.7  950 ≤84 5.5(380v) G1/2″ 120 130*46*96
VW-0.42/10 0.42 1.0  920 ≤84 4(380v) G1/2″ 120 130*46*96
VW-0.5/14 0.5 1.4  670 ≤84 5.5(380v) G1/2″ 180 145*50*110
WW-0.6/10 0.6 1.0  740 ≤84 5.5(380v) G1/2″ 180 145*50*110
WW-0.9/7 0.9 0.7  810 ≤84 7.5(380v) G1/2″ 180 145*50*110
WW-0.9/10 0.9 1.0  810 ≤84 7.5(380v) G1/2″ 180 145*50*110
WW-0.7/12.5 0.7 1.3  740 ≤84 7.5(380v) G1/2″ 180 145*50*110
WW-1.25/7 1..25 0.7  860 ≤85 11(380v) G3/4″ 280 160*65*120
WW-1.25/10 1.25 1.0  770 ≤85 11(380v) G3/4″ 280 160*65*120
WW-1.6/10 1.6 1.0  820 ≤85 15(380v) G3/4″ 320 166*65*122
WW-1.8/10  1.8 1.0  900 ≤86 15(380v) G3/4″ 320 166*65*122
WW-1.2/10 1.2 1.0  740 ≤84 5.5*2(380v) G1″ 300 185*125*140
WW-1.8/7 1.8 0.7  810 ≤84 7.5*2(380v) G1″ 300 185*125*140
WW-1.8/10 1.8 1.0  810 ≤84 7.5*2(380v) G1″ 300 185*125*140
WW-1.4/12.5 1.4 1.3  740 ≤84 7.5*2(380v) G1″ 300 185*125*140
WW-2.5/7 2.5 0.7  860 ≤86 11*2(380v) G1″ 300 185*125*140
WW-2.5/10 2.5 1.0  770 ≤86 11*2(380v) G1″ 300 185*125*140
WW-3.0/7 3 0.7  770 ≤86 11*2(380v) G1″ 320 185*125*140
WW-3.0/10 3 1.0  810 ≤86 11*2(380v) G1″ 320 185*125*140
WW-3.2/7 3.2 0.7  820 ≤86 15*2(380v) G1″ 320 190*150*150
WW-3.2/10 3.2 1.0  820 ≤86 15*2(380v) G1″ 320 190*150*150
WW.3.6/7 3.6 0.7  900 ≤86 15*2(380v) G1″ 320 190*150*150
WW-3.6/10 3.6 1.0  900 ≤86 15*2(380v) G1″ 320 190*150*150
WW.4.8/10 4.8 1.0  900 ≤86 15*2(380v) 11*1(380v) G11/2″ / 221*136*105
WW-5.4/10 5.4 1.0  900 ≤86 15kw*3 G11/2″ / 221*136*100
SW-6.5/8 6.5 0.8  640 ≤86 55kw DN50FL / 180*130*160

Drive Mode: Electric
Performance: Low Noise
Configuration: Portable
Material: Copper
Power Source: AC Power
Voltage: 380V 50Hz;460V 60Hz;220 60Hz
Customization:
Available

|

air compressor

Can air compressors be used for painting and sandblasting?

Yes, air compressors can be used for both painting and sandblasting applications. Here’s a closer look at how air compressors are utilized for painting and sandblasting:

Painting:

Air compressors are commonly used in painting processes, especially in automotive, industrial, and construction applications. Here’s how they are involved:

  • Spray Guns: Air compressors power spray guns used for applying paint coatings. The compressed air atomizes the paint, creating a fine mist that can be evenly sprayed onto surfaces. The pressure and volume of the compressed air impact the spray pattern, coverage, and overall finish quality.
  • Paint Mixers and Agitators: Compressed air is often used to power mixers and agitators that ensure proper blending of paint components. These devices use the compressed air to stir or circulate the paint, preventing settling and maintaining a consistent mixture.
  • Airbrushing: Air compressors are essential for airbrushing techniques, which require precise control over airflow and pressure. Airbrushes are commonly used in artistic applications, such as illustrations, murals, and fine detailing work.

Sandblasting:

Air compressors play a crucial role in sandblasting operations, which involve propelling abrasive materials at high velocity to clean, etch, or prepare surfaces. Here’s how air compressors are used in sandblasting:

  • Blasting Cabinets: Air compressors power blasting cabinets or booths, which are enclosed spaces where the sandblasting process takes place. The compressed air propels the abrasive media, such as sand or grit, through a nozzle or gun, creating a forceful stream that impacts the surface being treated.
  • Abrasive Blasting Pots: Air compressors supply air to abrasive blasting pots or tanks that store and pressurize the abrasive media. The compressed air from the compressor enters the pot, pressurizing it and allowing for a controlled release of the abrasive material during the sandblasting process.
  • Air Dryers and Filters: In sandblasting applications, it is crucial to have clean, dry air to prevent moisture and contaminants from affecting the abrasive blasting process and the quality of the surface being treated. Air compressors may be equipped with air dryers and filters to remove moisture, oil, and impurities from the compressed air.

When using air compressors for painting or sandblasting, it is important to consider factors such as the compressor’s pressure and volume output, the specific requirements of the application, and the type of tools or equipment being used. Consult the manufacturer’s guidelines and recommendations to ensure the air compressor is suitable for the intended painting or sandblasting tasks.

Proper safety measures, such as wearing protective gear and following established protocols, should always be followed when working with air compressors for painting and sandblasting applications.

air compressor

How do you troubleshoot common air compressor problems?

Troubleshooting common air compressor problems can help identify and resolve issues that may affect the performance and functionality of the compressor. Here are some steps to troubleshoot common air compressor problems:

1. No Power:

  • Check the power source and ensure the compressor is properly plugged in.
  • Inspect the circuit breaker or fuse box to ensure it hasn’t tripped or blown.
  • Verify that the compressor’s power switch or control panel is turned on.

2. Low Air Pressure:

  • Check the air pressure gauge on the compressor. If the pressure is below the desired level, the compressor might not be building up enough pressure.
  • Inspect for air leaks in the system. Leaks can cause a drop in pressure. Listen for hissing sounds or use a soapy water solution to identify the location of leaks.
  • Ensure the compressor’s intake filter is clean and not clogged, as this can restrict airflow and reduce pressure.

3. Excessive Noise or Vibration:

  • Inspect the compressor’s mounting and foundation to ensure it is secure and stable. Loose mounts can cause excessive noise and vibration.
  • Check for loose or damaged components, such as belts, pulleys, or motor mounts. Tighten or replace as necessary.
  • Verify that the compressor’s cooling system, such as the fan or fins, is clean and free from obstructions. Overheating can lead to increased noise and vibration.

4. Air Leaks:

  • Inspect all connections, valves, fittings, and hoses for leaks. Tighten or replace any loose or damaged components.
  • Apply a soapy water solution to suspected areas and look for bubbles. Bubbles indicate air leaks.
  • Consider using thread sealant or Teflon tape on threaded connections to ensure a proper seal.

5. Excessive Moisture in Compressed Air:

  • Check the compressor’s drain valve and ensure it is functioning properly. Open the valve to release any accumulated moisture.
  • Inspect and clean the compressor’s moisture separator or air dryer, if equipped.
  • Consider installing additional filtration or drying equipment to remove moisture from the compressed air system.

6. Motor Overheating:

  • Ensure the compressor’s cooling system is clean and unobstructed.
  • Check the motor’s air intake vents and clean any dust or debris that may be blocking airflow.
  • Verify that the compressor is not being operated in an excessively hot environment.
  • Check the motor’s lubrication levels and ensure they are within the manufacturer’s recommended range.
  • Consider using a thermal overload protector to prevent the motor from overheating.

If troubleshooting these common problems does not resolve the issue, it may be necessary to consult the manufacturer’s manual or seek assistance from a qualified technician. Regular maintenance, such as cleaning, lubrication, and inspection, can also help prevent common problems and ensure the optimal performance of the air compressor.

air compressor

What is the impact of tank size on air compressor performance?

The tank size of an air compressor plays a significant role in its performance and functionality. Here are the key impacts of tank size:

1. Air Storage Capacity: The primary function of the air compressor tank is to store compressed air. A larger tank size allows for greater air storage capacity. This means the compressor can build up a reserve of compressed air, which can be useful for applications that require intermittent or fluctuating air demand. Having a larger tank ensures a steady supply of compressed air during peak usage periods.

2. Run Time: The tank size affects the run time of the air compressor. A larger tank can provide longer continuous operation before the compressor motor needs to restart. This is because the compressed air in the tank can be used to meet the demand without the need for the compressor to run continuously. It reduces the frequency of motor cycling, which can improve energy efficiency and prolong the motor’s lifespan.

3. Pressure Stability: A larger tank helps maintain stable pressure during usage. When the compressor is running, it fills the tank until it reaches a specified pressure level, known as the cut-out pressure. As the air is consumed from the tank, the pressure drops to a certain level, known as the cut-in pressure, at which point the compressor restarts to refill the tank. A larger tank size results in a slower pressure drop during usage, ensuring more consistent and stable pressure for the connected tools or equipment.

4. Duty Cycle: The duty cycle refers to the amount of time an air compressor can operate within a given time period. A larger tank size can increase the duty cycle of the compressor. The compressor can run for longer periods before reaching its duty cycle limit, reducing the risk of overheating and improving overall performance.

5. Tool Compatibility: The tank size can also impact the compatibility with certain tools or equipment. Some tools, such as high-demand pneumatic tools or spray guns, require a continuous and adequate supply of compressed air. A larger tank size ensures that the compressor can meet the air demands of such tools without causing pressure drops or affecting performance.

It is important to note that while a larger tank size offers advantages in terms of air storage and performance, it also results in a larger and heavier compressor unit. Consider the intended application, available space, and portability requirements when selecting an air compressor with the appropriate tank size.

Ultimately, the optimal tank size for an air compressor depends on the specific needs of the user and the intended application. Assess the air requirements, duty cycle, and desired performance to determine the most suitable tank size for your air compressor.

China supplier Top Quality Oil Free Air Compressor   with high qualityChina supplier Top Quality Oil Free Air Compressor   with high quality
editor by CX 2023-09-27

Carbon dioxide compressor

As one of the carbon dioxide compressor manufacturers, suppliers, and exporters of mechanical products, We offer carbon dioxide compressors and many other products.

Please get in touch with us for details.

Manufacturer supplier exporter of carbon dioxide compressor.

Recent Posts